MiniMax: MiniMax M1

Minimax-M1

MiniMax M1 is a large-scale open-weight reasoning model built for long-context processing and efficient inference. Using a hybrid Mixture-of-Experts (MoE) design combined with a custom “lightning attention” mechanism, it can handle sequences up to 1 million tokens while maintaining strong FLOP efficiency. With 456B total parameters and 45.9B active per token, it is optimized for complex, multi-step reasoning.

Trained with a custom reinforcement learning pipeline (CISPO), MiniMax-M1 delivers exceptional performance in long-context comprehension, software engineering, agent-driven tool use, and mathematical reasoning. It achieves top results across benchmarks such as FullStackBench, SWE-bench, MATH, GPQA, and TAU-Bench—often surpassing other open models like DeepSeek R1 and Qwen3-235B.

Conversations

Download TXT
Download PDF

Creator MiniMax
Release Date June, 2025
License Apache 2.0
Context Window 1,000,000
Image Input Support No
Open Source (Weights) Yes
Parameters 456B, 45.9B active at inference time
Model Weights Click here

Performance Benchmarks

Category Task MiniMax-M1-80K MiniMax-M1-40K Qwen3-235B-A22B DeepSeek-R1-0528 DeepSeek-R1 Seed-Thinking-v1.5 Claude 4 Opus Gemini 2.5 Pro (06-05) OpenAI-o3
Extended Thinking 80K 40K 32k 64k 32k 32k 64k 64k 100k
Mathematics AIME 2024 86.0 83.3 85.7 91.4 79.8 86.7 76.0 92.0 91.6
AIME 2025 76.9 74.6 81.5 87.5 70.0 74.0 75.5 88.0 88.9
MATH-500 96.8 96.0 96.2 98.0 97.3 96.7 98.2 98.8 98.1
General Coding LiveCodeBench (24/8~25/5) 65.0 62.3 65.9 73.1 55.9 67.5 56.6 77.1 75.8
FullStackBench 68.3 67.6 62.9 69.4 70.1 69.9 70.3 69.3
Reasoning & Knowledge GPQA Diamond 70.0 69.2 71.1 81.0 71.5 77.3 79.6 86.4 83.3
HLE (no tools) 8.4* 7.2* 7.6* 17.7* 8.6* 8.2 10.7 21.6 20.3
ZebraLogic 86.8 80.1 80.3 95.1 78.7 84.4 95.1 91.6 95.8
MMLU-Pro 81.1 80.6 83.0 85.0 84.0 87.0 85.0 86.0 85.0
Software Engineering SWE-bench Verified 56.0 55.6 34.4 57.6 49.2 47.0 72.5 67.2 69.1
Long Context OpenAI-MRCR (128k) 73.4 76.1 27.7 51.5 35.8 54.3 48.9 76.8 56.5
OpenAI-MRCR (1M) 56.2 58.6 58.8
LongBench-v2 61.5 61.0 50.1 52.1 58.3 52.5 55.6 65.0 58.8
Agentic Tool Use TAU-bench (airline) 62.0 60.0 34.7 53.5 44.0 59.6 50.0 52.0
TAU-bench (retail) 63.5 67.8 58.6 63.9 55.7 81.4 67.0 73.9
Factuality SimpleQA 18.5 17.9 11.0 27.8 30.1 12.9 54.0 49.4
General Assistant MultiChallenge 44.7 44.7 40.0 45.0 40.7 43.0 45.8 51.8 56.5

Explore More AI Models

Leave a Reply

Your email address will not be published. Required fields are marked *